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Abstract

This study introduces an interpretable linear model for worker selection and scheduling in hybrid
manufacturing that considers profitability, resource usage, and energy simultaneously in the same
objective while respecting capacity, sequencing, and time bucket coupling constraints. By
assigning tunable weights to selection rewards, use penalties, lateness penalties, and energy costs,
the approach supports policy tunability and, through an explicit objective decomposition, reveals
marginal effect of each component on the final plan. Empirical application to operational data
indicates that such an equilibrium trade-oft between value, completion, and delay control is
possible, with temporal load staying in effective capacity; behavioral indicators within actual
records also suggest a substantial relationship between delays, energy intensity, and machine
availability variations. From a management viewpoint, the model offers an reproduceable low-cost
decision basis well suited for sensitivity analysis, scenario planning in terms of capacity and
energy policy alternatives, and periodic fine tuning to day-to-day fluctuations. Explainability
allows integration with learning or metaheuristic elements where higher predictive power and
scalability are needed while allowing transparent attributions from parameters to outcomes. Such
established limitations as weight calibration dependency and unavoidable process dynamics
approximations; yet, the model's expansibility provides for a realistic pathway towards
incremental real-world data-driven refinement and establishes groundwork for future extensions,
including coupling with learned estimators and more refined logistical constraints.
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1. Introduction

The combination of additive and subtractive processes in Hybrid Manufacturing Systems in the last few years
has boosted customizing, lowered lot sizes, and enhanced variety in products while making scheduling at the same
time much more challenging: an attainable schedule must cope with heterogeneous processes (turning and milling
and additive and drilling) all together, indefinite processing times, time-varying availability windows of machines,
and persistent mismatches between “scheduled” and “actual” shop-floor timestamps. FMS and JS-FMS research has
shown static dispatching rules (SPT and EDD and FCFS) suffer with significant plan reality discrepancies in
dynamic settings, which lead to data-driven “prediction-then-optimization” pipelines and/or metaheuristic hybrid
learning strategies (Abidi et al., 2020; Meilanitasari & Shin, 2021). Conversely, mixed-integer formulations (MILP
and MIP), as greatly expressive as they are for loading and selection, routing, and sequence-dependent setups, are
computationally demanding and less manager-interpretable in industry scale (Abazari et al., 2012; Roshanaei et al.,
2010; Akbaripour et al., 2018). This is precisely where “interpretable linear programming” and “sensitivity
analysis” pay a strategic dividend: having readily available operational ranges Processing_Time,
Machine_Availability, and Scheduled and Actual timestamps it is possible to build an open model that includes
capacity and window limits directly and then, through acceptable ranges on objective coeflicients and RHS
capacities, evaluate “what-if” situations cheaply and quickly (Shapiro, 1993; Monfared & Yang, 2004; Khan et al.,
2021). Industrial experience under real conditions varying from workforce distancing constraints to disconnected
parallel machines and transport and AGV integration also demonstrates that adding operational realism without a
sensitivity point of view produces brittle, high-risk decisions (Bazargan-Lari et al., 2022; Saidi-Mehrabad et al.,
2015; Um et al., 2009; Akbaripour et al., 2018).

Our question directly falls at this intersection: “Optimal Job Selection and Scheduling in Hybrid Manufacturing
Systems Using Linear Programming and Sensitivity Analysis,” built on three non-proprietary, readily available
data pillars processing time (Processing_Time), machine availability (Machine_Availability), and scheduled and
actual timestamps (Scheduled and Actual) so that (1) a subset of jobs is selected and assigned to machines with
maximum throughput and utilization or minimum total tardiness, (2) capacity constraints are imposed at the
machine level within real availability windows, and (8) plan robustness against small parameter perturbations is
quantified through sensitivity analysis and represented in managerial terms as “allowable increases and decreases”
for objective weights and capacities. Scientifically, this advancement acts as a bridge between two prevailing camps:
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heavyweight MILP and metaheuristics that are powerful but costly to compute and hard to interpret on the
decision table side versus static rules or simulation-alone research without an “interpretable bridge” to managerial
actionability (Byrne & Bakir, 1999; Meilanitasari & Shin, 2021). In our system, objective can be stated to “maximize
weighted sum of selected jobs” or “minimize total tardiness and incompleteness”; capacity constraints bind the
aggregate processing time on a machine to its “available time”; window constraints cause Actual to adhere to
Scheduled (with controllable slack); then sensitivity analysis gives “allowable ranges” on objective coefficients and
RHS values so managers know how far they can deviate from the priority weights, utilization targets, or shift and
machine capacities without breaking the optimal basis. The contribution thus is twofold: an implementable
“baseline LP” for HMS operating over small data domains, and a “robustness map” that distinguishes between safe
vs. risky parameter moves precisely what decision makers would desire under real world constraints like shift
changes, periodic faults, or safety considerations.

2. Literature Review

The flexible setting scheduling literature investigates a few options. At one level, ML and metaheuristics-
driven methods select and predict dispatching rules dynamically and optimize predictive accuracy; e.g., Abidi et al.
combine weighted feature extraction with a hybrid fuzzy DBN classifier and a lion algorithm variation to propose
rules in I'MS, with accuracy gains from combining metaheuristics and deep learning (Abidi et al, 2020).
Meilanitasari and Shin’s review highlights that static policies (SPT and EDD and FCFS) create significant gaps
under JS-FMS dynamics and encourages “prediction then-optimization” with sequence learning to bridge the
uncertainty and optimal scheduling gaps (Meilanitasari & Shin, 2021). In contrast, well-defined mathematical
models are used: Abazari et al. propose a hybrid continuous and 0-1 programming model with a GA for machine
loading to optimize profitability and utilization within capacity, batch size, processing time, tool, and magazine
constraints (Abazari et al., 2012). Roshanaei et al. formulate JSS with sequence-dependent setup times as a MILP to
optimize makespan and apply an electromagnetism like algorithm for the large instances (Roshanaei et al., 2010).
In cloud manufacturing, Akbaripour et al. develop service selection and scheduling over mixed composition
structures (sequence and parallel and loop and selective), combine service occupancy and transportation on hybrid
hub and spoke networks, and demonstrate that adding transportation and availability offers more realistic
solutions; sensitivity analyses also estimate policy robustness (Akbaripour et al., 2018). Methodologically, the
ancient underpinning of LP sensitivity to coefficient and RHS changes underlies implemented “what-if” analyses
(Shapiro, 1993; cf. Monfared & Yang, 2004 on fuzzy scheduling and control sensitivity and parameter tuning)

The field also leans towards hybrids: combining mathematical models with simulation and metaheuristics to
achieve high quality, scalable solutions. Examples include neural networks with simulated annealing for stochastic
job shops (Tavakkoli Moghaddam et al., 2005), hybrid simulation analytical models of multi period, multi product
planning (Byrne & Bakir, 1999), and joint scheduling maintenance models with multiobjective search (Mishra et al.,
2022; also Tirkolaee et al., 2020 for energy-aware JIT). In FMS and JS-FMS, other papers introduce realism:
integrated JSS with conflict-free AGV routing (Saidi-Mehrabad et al., 2015), FMS with AGVs and multiobjective
ES and MONLP (Um et al., 2009), and GA-TOPSIS simulation for operator assignment (Azadeh et al., 2011). At
the design level, RSM and BWM frameworks make FMS design parameters flexible and optimize performance vs.
deployment cost (Pasha et al., 2023). Recent RMS and Cloud studies indicate that estimation of actual availability,
transportation, and reconfigurability significantly alters schedule and planning decisions, and sensitivity and
ANOVA are key in parameter effect quantification (Imsetif et al., 2025; Yazdani et al., 2022). Multiobjective studies
during the COVID period include such constraints as social distancing of workers into parallel machines models
and provides direct impacts on profit and annual scheduling (Bazargan-Lari et al., 2022). In additive processes,
scheduling non-identical parallel SLM machines with makespan and tardiness objectives and a learning-based
NSGA-II is the merging of the field towards “explicit model + learning” hybrids (Rohaninejad et al., 2021).
Generally, the literature shows: (1) MILP and metaheuristics excel with complete constraints but sometimes
sacrificing interpretability and low cost sensitivity; (2) static rules fall short in dynamic settings, with the need for
Scheduled and Actual data (Meilanitasari & Shin, 2021); and (3) interpretable LP with complete sensitivity can
provide a reproducible baseline to HMS decision-making, especially where only usual operational parameters such
as Processing_Time, Machine_Availability, and Scheduled and Actual are accessible (Shapiro, 1993; Monfared &
Yang, 2004; Khan et al., 2021). Therefore our gap an LP formulation for “job selection and scheduling” in HMS
based on public operational fields and reporting allowable ranges on coefficients and capacities addresses two
requirements directly: analytical transparency for managers and simplicity with real world data for fast, low cost
deployment.

3. Data and Methodology
3.1. Study Data

The data set consists of actual planning and execution data from a hybrid manufacturing system, where each
row is a production job with a unique identifier and includes the operational and temporal attributes necessary for
linear modeling and sensitivity analysis. For each operation, operation type (milling, drilling, lathe, additive, or
grinding) and preassigned machine (Machine_ID) are entered; Processing_Time is the typical job time in base time
units; Machine_Availability is documented as percent or effective capacity rating, converted to per interval machine
capacity; Scheduled_Start and Scheduled_End define the planned window, and Actual_Start and Actual_End
denote the actual timestamps (used for calibration and evaluation). Energy_Consumption per job identifies energy
intensity per unit time of processing, while Job_Status and Optimization_Category are only used for weighting or
ex-post evaluation of performance. In order to transform raw data into model inputs, the planning horizon [H7 is
discretized into a uniform time grid with interval length A; by representing calendar timestamps as bucket indices,
each job’s admissible window along the time axis is defined. Per-machine, per-bucket capacity limit cap,,; is

Availability,, ¢+ .

————— . Processin
. N . 100 . . -
unit harmonization to base minute or hour. Actual_* timestamps are not used as constraints for the purpose of

calculated from cap,,; =4 - g times p; are simply read from Processing_Time following

54

© 2025 by the author; licensee Eastern Centre of Science and Education, USA



Asian Business Research Journal, 2025, 10(10): 563-60

keeping the model predictive and deployable; instead, they will be applied once optimization is done in order to
evaluate and calibrate the penalties for early start and late finish.

3.2. Modeling and Solution Method

We propose a proactive, time-indexed linear program that simultaneously optimizes the selection of jobs,
allocation of capacity per machine, and adherence to planned windows. Allowing preemption (that is, splitting a job
over multiple time buckets) enables a linear, free binary formulation at no increased complexity and yet with only
temporal stickiness through the introduction of penalties for processing outside the planned window. We then
define index sets and parameters, decision variables, objective, and constraints.
Index sets:
J = jobs.
M = set of machines.
T = set of discrete time buckets {1, 2, ..., H}.

For each j in J, let m(j) in M be its preassigned machine. For each j in J, let Ty, (j)= buckets between
Scheduled_Start_j and Scheduled_End_j, Teariy(j) = buckets preceding Scheduled_Start_j, and Tjate (j)= buckets
tollowing Scheduled_End_j.

3.8. Parameters
A = length of each time bucket.

p;= typical processing time of job ] in units of A.

capy, ¢ = capacity of machine m available in bucket t (in units of A), obtained from Machine_Availability and
work calendar.

ej = energy rate of job ] per unit of processing time.

w; = job weight and priority (in simplest case w; = 1 or by Optimization_Category).

a, B, v, 6, k = nonnegative objective weights trading off throughput, lateness, idle capacity, energy, and
undercompletion.

3.4. Decision Variables
x;j € [0,1]= job j selection variable (1: completely processed; fractional values: partially processed in the horizon).

y{¢ = 0= amount of processing of job j in bucket t in the scheduled window (t € Ty (/).

early
Jit
late

Vit = 0= late processing of job j (¢ € Tiate()))-

= 0= early processing of job j (t € Teary(j))-

Om,¢ = 0= overtime for machine m in bucket t (discouraged through a big penalty).
idle,, s = 0= idle capacity of machine m in bucket t (slack to quantify unused capacity).
u; = 0= undercompletion of job j in the horizon (penalized to make it desirable to complete even if x; is fractional).

3.5. Aggregate Helpers

Vie = yﬁ? + y}??rly + y]l-f’tte, Vt € T (and for buckets not in the specified subsets, the respective components are zero

by default).
E; = z yf?rly (total early processing of job ).
t€Tearly(j)

L= Z _ y]l-f’tte (total late processing of job j).
t€Tate (J)

Y; = ztyj't (total allocated processing of job j over the horizon).

3.6. Objective Function
MaximizeZ =a- Y w,x; = B-> L, —y- > Yidle, —5-> €Y, —k- DU,
jed jed meM teT jed jed
The first encourages throughput and job selection; the second inhibits processing with delay; the third reduces
idle capacity; the fourth imposes a cost for energy usage; and the fifth imposes a cost for undercompletion to make
the plan reach completion even if x; is fractional.

3.7. Constraints

Job processing balance (flow of each job through time): Vj E]:Z Yj¢ + Ui = pjxj Machine capacity per
teT

bucket (including idle measurement and overtime control): Vm € M,Vt € T: Z Vi +idley; <
je€m(j)=m

Capmt + Ome-

Unavailability of machines (optional hardening of constraint 2):

vmeM,vteT withcap, =0:y;, =0

For each j such that m(j) = m and 0., = 0 and idle,, ; = 0 (this line is a reminder that with zero cap only
idle can equal cap and y and o are zero.)
Splitting up processing by temporal region and lateness and earliness definition:
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Vj € J:E; = Z e
tETearly(j)
Vj€J:L = Z e
tETlate(j)
Vj €J,Vt € Ton(j):yf = 0
. . 1
Vi€eJVte Tearly(/):yje,?ry =0
Vj € ],Vt € Tiare (: y/3 = 0

, . . . 1
vj€],vt € T\(Ton() U Tearly(]) U Tlate(])):yﬁ{“1 = yﬁ?ry = y]!i“te =0

3.8. Bounds and Nonnegativity
VieJ:i0<sx;<1
Vie]iuj=0
vm € M,Vt € T:idle,,,, = 0
Vme MVt €T:0p =0
VjEJVtET:y ) =20
Vj €Vt ET: Y5 20
Vj€JVtET: Y3 >0
Policy control of overtime caps: Ym € M,Vt € T:no,,; < Omax,, ; where Omax,, ; is policy-defined (usually

zero or a small percentage of cap,, ;).

Critical jobs (optional hard finish or soft slack): Vj € Jeritical € J: % = 1V Z Vit = pjx; — Uslack; with
ter

high penalty on Uslack; in the objective.
Hard time windows (if strict timing is essential instead of penalties):

Vi €J:y5eY = 0 for all t € Tearry ()
Y3 = 0 for all t € Tiaee ()
in this case, L; drops out of the objective and only y°" is admissible.
j drop ) yy

Choosing A: smaller A increases temporal fidelity but increases model size; standard A in the 5-15 minutes

range.
Availability,,

;. off-shift
100

Extrapolating Machine_Availability to capy,;}: if in percentage form, cap,; =4"-
buckets get cap = 0.

A

. . . . Energy_Consumption; n .
Energy: if Energy_Consumption is a per-job total, scale to e; = &Y > P2 5o that & - Ztejyj‘t is

meaningful.

Excessive fragmentation avoidance: if contiguity in time matters, one can impose soft penalties on inter bucket
variance of yj+; to maintain linearity, penalizing early and late aggregates typically does the trick.

Single-machine per job: as Machine_ID is fixed in the data, no assignment constraint is needed; if some

operations are multi option, generalize to Yj, and write E Yjmt T+ Uj = p;Xj with capacity per (m,t) (still
: : t
m

linear and preemptive).

Sensitivity results: post determine an admissible range on objective coefficients (wj, 8, B) and RHS values
(capy,¢); this is beyond the formulation and requires post-optimal analysis of the LP solver.

In the ideal plan, x; is the portion of job j which was scheduled and finished by the horizon; y;; is the time
capacity plan on machine m(j); L; is a measure of how much late processing was required to finish the job; idle,
reports unused capacity, acts as a control to fill shifts; and %; measures undercompletion so managers could balance
between serving more orders on Windows and energy consumption.

3.9. Data Analysis

The discussion begins with scenario behavior and the overall impact on the objective, selected jobs, utilization,
and costs; followed by objective composition; followed by job-level schedule quality and time bucket occupancy;
then plan alignment with actual execution; finally, capacity slack.

From Table 1, increasing alpha raises the objective monotonically while selected_jobs stays at 144 in most
combinations. Increasing kappa from 50 to 150 slightly lifts avg_utilization; with kappa = 300 the usage penalty
total_u pushes total_L upward. This is most severe at alpha=400, where selected_jobs drops to 114. The preferred
region is alpha€{700,1000} with kappa € {50,150}, balancing a high objective, full completion, and controlled
delay.

}'i‘o clarify the objective, Table 2 shows alphasum(wx) as the dominant positive term, and -kappasum(u) is the
largest subtraction; -betasum(L) and -deltasum(energyYDelta) also reduce the total but to a lesser extent. This
accounts for the fact that mid-range kappa performs better than very high kappa in Table 1: usage must be reined
in, but over-penalizing inflates total_L and wreaks havoc on objective.
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Table 1. Parametric scenarios.

Alpha Kappa Beta Gamma Delta Cap_Scale Objective Selected_Jobs Total U Total_L Total_Energy Avg Utilization
400 50 10 0.1 0.05 1 47065.92107 144 102.8534885 0.365 555.0900639 0.553998707
400 150 10 0.1 0.05 1 36932.80242 144 100.7334697 16.875 568.5425474 0.5716655631
400 300 10 0.1 0.05 1 25384.25683 114 48.97521156 134.6281429 521.7602717 0.562236105
700 50 10 0.1 0.05 1 86245.92107 144 102.8534885 0.365 555.0900639 0.553998707
700 150 10 0.1 0.05 1 76112.80242 144 100.7334697 16.875 568.5425474 0.5716655631
700 300 10 0.1 0.05 1 61135.30115 144 98.2312024:6 78.59 588.7622905 0.592517757
1000 50 10 0.1 0.05 1 125425.9211 144 102.8534885 0.365 555.0900639 0.553998707
1000 150 10 0.1 0.05 1 115292.8024 144 100.7334697 16.875 568.5425474 0.5671665531
1000 300 10 0.1 0.05 1 100315.3011 144 98.23120246 78.59 588.7622905 0.592517757
Table 2. Objective composition.

Component Value

alphasum(wx) 130600

- beta*SUM(L) -245.8333333

- deltaSUM(energyY *Delta) -28.50065745

- kappa*SUM(u) -20051.42204

TOTAL (objective) 110274.244
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Table 3. Job selection summary (sample).

. i P i h 1 h 1 imizati Y
Job_ID | Machine ID Operation_ roc?ssmg_ Energy_' Scheduled_ | Scheduled_ Job_ Optimization_ < u — | Total_Energy
Type Time Consumption Start End Status Category sum
- 3/18/2023% | 3/18/2023 Moderate
Joo1 Mo1 Grinding 76 11.42 5:00 916 Completed Efficiency 1.2667 0 0
Joo2 Mo1 Grinding 79 6.61 s/ 1:/1?)025 s/ 1;22025 Delayed Low Efficiency 0.4267 1.78 5.8829
Jo14 Mo4 Additive 112 2.01 9/18/2023 | 8/18/2025 | (1 leted Optimal 0.0867 | 5.76 | 8.56 3.5778
10:10 12:02 Efficiency
Table 4. Time-bucket schedule Y (sample).
Job_ID Machine_ID bucket_start bucket_end Y
Joo2 Mo1 3/18/2023 8:00 3/18/2023 8:30 0.89
Jo11 Mo1 3/18/2023 9:30 3/18/2023 10:00 0.89
Jo1e6 Mo1 3/18/2023 10:30 3/18/2028 11:00 0.89
Jo58 Mo1 3/18/2023 18:00 3/18/2023 18:30 0.242833333
Jo60 Mo1 3/18/2023 18:00 3/18/2023 18:30 0.647166667
Table 5. Hybrid manufacturing categorical (sample).
. Operation Material Processing Energy Machine Scheduled Scheduled Actual Actual Job e e .
Mach - - . - . 1y ets - - - - -
Job_ID achine_ID Type Used Time Consumption | Availability | Start End Start End Status Optimization_Category
Joo1 Mo1 Grinding 3.17 76 11.42 96 3/18/2023 8:00 3{1168/2023 21)158/2023 3{2118/2023 Completed | Moderate Efficiency
. 3/18/2028 | 3/18/2028 | 3/18/2023 .
- T .Q
Jo10 Mo1 Drilling 2.10 27 3.66 97 3/18/2023 9:30 9:57 9:54 10:21 Delayed Low Efficiency
. 3/18/202¢ 3/18/2023 | 8/18/202¢ . ..
Jo14 Mo4 Additive 2.33 112 2.01 95 3/18/2023 10:10 8/18/2025 | 8/18/2023 | 3/18/2023 Completed | Optimal Efficiency
12:02 10:10 12:02
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For quality at the job level, Table 8 (Ip selected subj summary) indicates that most rows have x=1 and
Job_Status=Completed. Values of u and L indicate pressure from machine usage and delay risk. Rows marked
Optimal or High Efficiency tend to have lower energy with controlled L, whereas Low Efficiency is found with
higher L or energy.

To align plan and reality, Table 5 (hybrid manufacturing categorical) shows Scheduled vs Actual times.
Delayed entries tend to coincide with higher energy or lower machine availability. Together with Table 3, this
indicates that re-ordering toward lower-energy operations and tighter availability constraints can reduce delay
incidence.

To complete the capacity snapshot, Table 6 (idle by time-bucket) shows zero Idle in the sampled intervals; this
aligns with Y distribution and avg_utilization rates in Table 1. Further gains are expected to arise from reducing
usage and energy costs as well as avoiding Delayed/Failed instances rather than filling idle holes.

Table 6. Idle by time-bucket (sample).

Machine_ID bucket_start bucket_end Idle
Mo1 3/18/2023 8:00 3/18/2023 8:30 0
Mo1 3/18/2023 10:30 3/18/2023 11:00 0
Mo1 3/18/2023 14:30 3/18/2023 15:00 0

4. Discussion and Conclusion

The combined evidence from Table 1 to Table 6 indicates that a transparent linear formulation with weights
alpha, kappa, beta, gamma, and delta yields an operational balance between objective value, completion, and delay
control. Within reasonable levels of weights, the objective increases while preserving the set of completions;
excessive use penalties at high levels degrade performance by raising total_u and, in turn, total L. This is in
accordance with Table 2: alphasum(wx) is the main driver, whereas -kappa*sum(u) is the main deduction and, if
overdone, overstates delays and makes the objective worse. Temporal load in Table 4 shows Y staying within
effective capacity, as is expected from avg_utilization in Table 1. At the job level, Table 3 reveals that Optimal and
High Efficiency options generally pair with less energy and controlled delay, and Low Efficiency pairs with more
usage pressure or energy consumption. Plan-versus-actual agreement in Table 5 confirms that delayed cases often
overlap with more energy or less availability. Finally, Table 6 shows no major idle pockets, hence improvement
lever is towards weight tuning and reordering towards lower energy operations.

Contrary to literature, the results both support and augment three prevalent themes. First,
learning/metaheuristic models adaptively choose dispatching rules and have reported enhancements in predictive
accuracy. Our findings via Table 8 and Table 4 show that without learning, a replicable and interpretable baseline
can indeed be established and served as a foundation for “prediction then optimization” hybrids. Second, well-
defined mathematical models used in the past often favor MILP with sequence-dependent setups and
transportation, and search heuristics to ensure scalability. Here, planar structure and objective decomposition in
Table 2 retain explainability and sensitivity at little computational cost, which is a luxury for rapid deployment to
HMS. Third, energy-aware and availability-aware models drastically change scheduling decisions. The consistency
across Table 1, Table 3, and Table 5 sends the same message: with energy and capacity weighted properly, both
delay and consumption are both optimized together.

The lesson of operation is to keep weights in a well-balanced band so that the target stays high and risk of
delay is controlled, with this plausible baseline being a stepping stone toward learning or metaheuristic
optimization. Adaptive retuning of weights against Actual signals and efficiency labels in Table 5 is a plausible next
step, while using Table 4 to recognize congested time windows and resequence towards lower energy strings. This
reaffirms compatibility with the “explicit model + learning” hybrids emphasized in the literature.

An understandable linear model introduced objective benefit, work completion, and delay control into
equilibrium. The objective breakdown highlighted selection incentives’ key role and extreme sensitivity to use
penalties. Time-bucket scheduling kept load in efficient capacity, with real execution data correlating delays and
energy use with availability. The approach presents an open, low cost foundation waiting for incorporation of
learning and metaheuristic capabilities.
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