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Abstract 

Financial institutions face increasingly complex challenges in sequential decision-making tasks, 
ranging from real-time fraud detection to dynamic risk management. Deep learning (DL) 
architectures have emerged as powerful tools for addressing these challenges due to their ability 
to capture temporal dependencies and learn hierarchical representations from sequential financial 
data. This review examines the application of various DL architectures, including recurrent neural 
networks (RNNs), long short-term memory (LSTM) networks, gated recurrent units (GRUs), and 
transformer-based models, in financial sequential decision-making contexts. We analyze how 
these architectures have been adapted to handle unique characteristics of financial data, such as 
non-stationarity, high noise levels, and the need for interpretability. The review covers 
applications across fraud detection systems, credit risk assessment, algorithmic trading, portfolio 
optimization, and market microstructure analysis. We discuss the evolution from traditional 
machine learning (ML) approaches to modern DL architectures, highlighting their advantages in 
processing high-dimensional sequential data and making real-time decisions. Furthermore, we 
examine hybrid architectures that combine multiple DL components to address specific financial 
tasks, such as attention mechanisms for feature importance and reinforcement learning (RL) for 
adaptive decision policies. The review also addresses critical challenges including model 
interpretability, regulatory compliance, data quality issues, and computational efficiency. Through 
comprehensive analysis of recent developments, this paper provides insights into the current state 
of DL applications in financial sequential decision-making and identifies promising directions for 
future research, including explainable artificial intelligence (AI) integration, federated learning for 
privacy-preserving applications, and quantum-inspired architectures for enhanced computational 
capabilities. 
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1. Introduction 

The financial services industry has undergone a profound transformation in recent years, driven by the 
exponential growth of digital transactions, the proliferation of alternative data sources, and the increasing 
complexity of financial markets [1]. Deep learning (DL) has emerged as a revolutionary technology that addresses 
the limitations of traditional analytical methods in processing vast amounts of sequential financial data and making 
real-time decisions [2]. Unlike conventional machine learning (ML) approaches that rely heavily on manual 
feature engineering, DL architectures automatically learn hierarchical representations from raw data, making them 
particularly suitable for complex financial applications where temporal dependencies and sequential patterns are 
critical. Sequential decision-making in financial systems encompasses a wide range of tasks that require processing 
time-ordered information and making decisions that influence future outcomes [3]. These tasks include detecting 
fraudulent transactions in real-time payment systems, assessing credit risk based on evolving borrower behavior, 
executing algorithmic trading strategies that respond to market microstructure dynamics, and managing portfolio 
risk under changing market conditions. Each of these applications presents unique challenges that demand 
sophisticated modeling approaches capable of capturing long-term dependencies, handling non-stationary 
distributions, and adapting to regime changes in financial markets. 

The application of DL to financial sequential decision-making has gained substantial momentum, with 
recurrent neural networks (RNNs) and their variants, particularly long short-term memory (LSTM) networks and 
gated recurrent units (GRUs), becoming the foundational architectures for modeling temporal patterns in financial 
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data [4]. These architectures address the vanishing gradient problem that plagued earlier recurrent models and 
enable the learning of long-range dependencies essential for financial forecasting and risk assessment. More 
recently, transformer-based models, originally developed for natural language processing (NLP), have been 
adapted to financial domains, offering advantages in parallel processing and the ability to capture complex 
relationships across extended sequences through self-attention mechanisms [5]. Furthermore, the integration of 
reinforcement learning (RL) with DL architectures has opened new avenues for developing adaptive trading 
systems and dynamic risk management strategies that learn optimal policies through interaction with market 
environments [6]. The success of DL in financial applications can be attributed to several key factors. First, the 
availability of large-scale financial datasets, including high-frequency trading data, transaction records, and 
alternative data sources such as social media sentiment and satellite imagery, provides the necessary training data 
for DL models. Second, advances in computational infrastructure, particularly graphics processing units (GPUs) 
and tensor processing units (TPUs), have made it feasible to train complex DL architectures on financial datasets. 
Third, the development of specialized DL frameworks and libraries has lowered the barriers to implementing 
sophisticated models in production environments. 

Despite these advances, the application of DL to financial sequential decision-making faces significant 
challenges that distinguish it from applications in other domains. Financial data exhibits unique characteristics 
including non-stationarity, where statistical properties change over time due to evolving market conditions and 
regulatory changes [7]. The signal-to-noise ratio in financial data is typically low, making it difficult to extract 
meaningful patterns without overfitting to historical noise. Moreover, financial applications demand high levels of 
interpretability and transparency to satisfy regulatory requirements and build trust with stakeholders, which 
conflicts with the black-box nature of many DL architectures [8]. The adversarial nature of financial markets, 
where participants actively seek to exploit predictable patterns, adds another layer of complexity as models must be 
robust against adversarial attacks and capable of adapting to changing market dynamics. This review provides a 
comprehensive examination of DL architectures for sequential decision-making in financial systems, with particular 
emphasis on their applications in fraud detection and risk management. We analyze the theoretical foundations of 
major DL architectures, evaluate their performance across different financial tasks, and discuss practical 
considerations for deployment in production environments. The paper is organized to provide both breadth and 
depth in coverage, examining foundational architectures such as RNNs and LSTM networks, advanced models 
including transformers and attention mechanisms, and emerging approaches that combine multiple DL 
components in hybrid architectures [9]. 
 

2. Literature Review 
The evolution of DL applications in financial systems reflects a progression from simple feedforward networks 

to sophisticated architectures capable of modeling complex temporal dependencies and making sequential decisions 
under uncertainty. Early applications of neural networks in finance focused primarily on static prediction tasks 
such as credit scoring and bankruptcy prediction, utilizing multilayer perceptrons (MLPs) that processed fixed-
length feature vectors without explicit temporal modeling [10]. However, the recognition that financial data 
inherently possesses temporal structure led researchers to explore recurrent architectures that could capture 
sequential patterns and dependencies across time steps. The introduction of LSTM networks provided a 
breakthrough in modeling long-term dependencies, and their adaptation to financial forecasting demonstrated 
significant improvements over traditional time series methods [11]. Subsequent research established LSTM 
networks as a standard architecture for financial sequential modeling, with applications spanning stock price 
prediction, volatility forecasting, and credit risk assessment. 

The application of DL to fraud detection in financial systems represents one of the most impactful use cases of 
sequential decision-making architectures. Traditional rule-based fraud detection systems suffer from high false 
positive rates and inability to adapt to evolving fraud patterns, motivating the development of ML-based 
approaches [12]. Early ML methods for fraud detection relied on static features and batch processing, limiting 
their effectiveness in real-time transaction monitoring. The adoption of RNN-based architectures enabled the 
modeling of transaction sequences, capturing behavioral patterns and temporal anomalies that indicate fraudulent 
activity [13]. Research demonstrated that LSTM networks could effectively learn normal transaction patterns for 
individual users and detect deviations indicative of fraud, achieving superior performance compared to traditional 
methods. Recent advances have incorporated attention mechanisms into fraud detection systems, allowing models 
to focus on relevant historical transactions when evaluating current transaction risk [14]. The integration of 
graph neural networks (GNNs) with temporal models has further enhanced fraud detection by capturing 
relationships between entities in transaction networks while maintaining temporal context. 

Credit risk assessment represents another critical application domain where DL architectures have 
demonstrated substantial value in sequential decision-making. Traditional credit scoring models rely on static 
snapshots of borrower characteristics, failing to capture the dynamic evolution of credit risk over time [15]. The 
application of LSTM networks to credit risk modeling enables the incorporation of temporal patterns in borrower 
behavior, payment histories, and macroeconomic conditions, resulting in more accurate risk predictions [16]. 
Research has shown that sequential models can capture early warning signals of credit deterioration, enabling 
proactive risk management interventions. Furthermore, the ability of DL architectures to process heterogeneous 
data sources, including transaction histories, account activities, and external market data, provides a more 
comprehensive view of credit risk compared to traditional scoring models [17]. The development of survival 
analysis frameworks using DL has extended the capabilities of credit risk models to predict not only default 
probability but also time-to-default, enabling more sophisticated risk management strategies. 

Algorithmic trading and market microstructure analysis have witnessed significant transformation through the 
application of DL architectures for sequential decision-making. High-frequency trading strategies require 
processing vast streams of market data and making split-second decisions, tasks for which DL models are 
particularly well-suited [18]. LSTM networks have been applied to predict short-term price movements by 
learning patterns in order book dynamics, trade flows, and market microstructure features [19]. The challenge of 
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non-stationarity in financial markets has motivated the development of adaptive architectures that can detect 
regime changes and adjust model parameters accordingly. Research has explored the use of RL combined with DL 
for developing trading agents that learn optimal execution strategies through interaction with market simulators 
[20]. The integration of attention mechanisms allows trading models to dynamically weight the importance of 
different market features and historical observations, improving prediction accuracy in volatile market conditions. 

Portfolio optimization and risk management have benefited from DL architectures that can model complex 
dependencies among asset returns and capture time-varying risk dynamics. Traditional portfolio optimization 
relies on mean-variance frameworks that assume stationary return distributions, an assumption frequently violated 
in practice [21]. DL-based approaches enable the modeling of non-linear relationships among assets and the 
incorporation of alternative data sources for enhanced risk assessment. LSTM networks have been employed to 
forecast covariance matrices and capture dynamic correlations among assets, enabling more robust portfolio 
construction [22]. The application of variational autoencoders (VAEs) and generative adversarial networks 
(GANs) to financial risk modeling has opened new possibilities for scenario generation and stress testing, allowing 
risk managers to explore a wider range of potential market outcomes. Furthermore, the development of DL-based 
value at risk (VaR) models has improved the accuracy of risk estimates by capturing tail dependencies and extreme 
event probabilities [23]. 

The transformer architecture, originally developed for NLP tasks, has recently gained traction in financial 
applications due to its ability to process long sequences efficiently through parallel computation and capture long-
range dependencies through self-attention mechanisms [24]. Financial transformers have been applied to various 
sequential decision-making tasks, including return prediction, volatility forecasting, and event detection in news 
streams. The attention mechanism provides interpretability by highlighting which historical observations are most 
relevant for current predictions, partially addressing the black-box criticism of DL models [25]. Research has 
demonstrated that transformer-based models can outperform LSTM networks on certain financial tasks, 
particularly when dealing with very long sequences or when parallel processing capabilities are important. Hybrid 
architectures combining transformers with convolutional neural networks (CNNs) have been developed to capture 
both local patterns and global dependencies in financial time series [26]. 

The integration of RL with DL, often referred to as deep reinforcement learning (DRL), has emerged as a 
powerful framework for financial sequential decision-making problems where agents must learn optimal policies 
through trial and error [27]. DRL algorithms such as deep Q-networks (DQN), proximal policy optimization 
(PPO), and actor-critic methods have been applied to portfolio management, learning trading strategies that 
maximize risk-adjusted returns. The advantage of DRL lies in its ability to optimize long-term objectives rather 
than myopic one-step-ahead predictions, making it particularly suitable for strategic decision-making in finance 
[28]. Research has explored the use of DRL for optimal trade execution, learning to minimize market impact and 
transaction costs when executing large orders. However, challenges remain in applying DRL to financial markets, 
including sample efficiency, stability of learning algorithms, and the difficulty of accurately simulating market 
responses to agent actions. 

Interpretability and explainability have emerged as critical concerns in the deployment of DL architectures for 
financial sequential decision-making, driven by regulatory requirements and the need for stakeholder trust [29]. 
Various approaches have been developed to make DL models more interpretable, including attention visualization, 
saliency maps, and layer-wise relevance propagation. The development of explainable AI (XAI) techniques 
specifically for financial applications has focused on identifying which features and time steps contribute most to 
model predictions [30]. Research has shown that incorporating domain knowledge through architecture design, 
such as using separate pathways for different types of financial information, can improve both performance and 
interpretability. Furthermore, the development of model-agnostic explanation methods such as SHAP values and 
LIME has provided tools for understanding DL model behavior in financial contexts. 
 

3. Deep Learning Architectures for Fraud Detection 
Fraud detection in financial systems represents a critical application of DL architectures for sequential 

decision-making, where the temporal ordering of transactions provides essential context for distinguishing 
legitimate from fraudulent activities. The challenge of fraud detection lies in identifying rare anomalous events 
within massive transaction streams while maintaining low false positive rates that could inconvenience legitimate 
customers [31]. Traditional rule-based systems and statistical methods struggle with the evolving nature of fraud 
patterns, as fraudsters continuously adapt their techniques to evade detection. DL architectures address these 
limitations by learning complex representations of normal behavior and detecting subtle deviations that may 
indicate fraud. The sequential nature of transaction data makes RNN-based architectures particularly suitable, as 
they can model temporal dependencies and capture evolving patterns in user behavior over time. LSTM networks 
have become a cornerstone of modern fraud detection systems due to their ability to remember relevant historical 
information while forgetting irrelevant details through gated mechanisms. 

The application of LSTM networks to fraud detection typically involves training models on sequences of 
historical transactions for each user or account, learning representations of normal transaction patterns including 
typical amounts, frequencies, merchant categories, and geographic locations [32]. When a new transaction occurs, 
the model evaluates it in the context of recent transaction history, producing a risk score that indicates the 
likelihood of fraud. Research has demonstrated that this sequential approach significantly outperforms methods 
that evaluate transactions in isolation, as fraudulent activity often involves subtle changes in behavior patterns that 
are only apparent when examining sequences. The architecture design for fraud detection systems must balance 
model complexity with real-time inference requirements, as transactions typically must be evaluated within 
milliseconds to avoid degrading user experience. Various optimization techniques have been developed to reduce 
inference latency, including model compression, quantization, and the use of efficient recurrent architectures such 
as GRUs that require fewer parameters than LSTM networks [33]. 

Attention mechanisms have enhanced fraud detection capabilities by allowing models to focus on the most 
relevant historical transactions when evaluating current transaction risk. The self-attention mechanism computes 
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relevance weights for each transaction in the historical sequence, enabling the model to dynamically determine 
which past events are most informative for assessing current risk [34]. This approach has proven particularly 
effective in scenarios where fraud patterns involve specific sequences of transactions, such as testing stolen card 
information with small purchases before attempting larger fraudulent transactions. Research has shown that 
attention-based models achieve improved detection rates compared to standard LSTM networks while also 
providing interpretability through visualization of attention weights. The interpretability aspect is valuable for 
fraud analysts who need to understand why particular transactions were flagged, enabling them to make informed 
decisions about whether to block transactions or request additional verification. 

Graph-based DL architectures have extended fraud detection capabilities by incorporating network structure 
in addition to temporal information. Financial transaction data naturally forms a graph where nodes represent 
accounts or entities and edges represent transaction relationships. GNNs can learn representations that capture 
both the characteristics of individual nodes and their positions within the transaction network [35]. The 
integration of GNNs with temporal models creates architectures capable of detecting fraud rings, where multiple 
accounts collaborate in coordinated fraudulent activities. Research has demonstrated that combined graph-
temporal models can identify sophisticated fraud schemes that would be difficult to detect using temporal 
information alone. These architectures process sequences of graph snapshots, learning how network structure 
evolves over time and detecting anomalous changes that may indicate organized fraud activities. 

The challenge of class imbalance in fraud detection, where legitimate transactions vastly outnumber fraudulent 
ones, has motivated the development of specialized training techniques for DL architectures. Standard training 
procedures can result in models that achieve high overall accuracy by simply predicting all transactions as 
legitimate, failing to detect the rare fraudulent cases that are of primary interest [36]. Techniques such as 
oversampling minority classes, cost-sensitive learning, and focal loss have been adapted to DL fraud detection 
systems to ensure models learn to identify fraudulent patterns despite their rarity. Research has explored the use of 
generative models such as GANs to synthesize realistic fraudulent transaction sequences for training, addressing 
the scarcity of labeled fraud examples. Furthermore, semi-supervised and unsupervised learning approaches have 
been developed to leverage large amounts of unlabeled transaction data, learning representations of normal 
behavior that enable anomaly detection without requiring extensive fraud labels. 
 

 
Figure 1. Architecture of LSTM-based fraud detection system. 

 
The diagram shows the flow from transaction sequence input through bidirectional LSTM layers with attention 

mechanism to fraud risk score output. The input layer processes transaction features including amount, merchant 
category, geographic location, and timestamp. Bidirectional LSTM layers capture both forward and backward 
temporal dependencies across the transaction sequence. The attention layer dynamically weights the importance of 
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historical transactions, with darker shading indicating higher attention weights for more relevant past events. 
Dense layers with dropout regularization perform final risk prediction, and the output layer produces a fraud 
probability score between 0 and 1. The architecture was trained on a 2023 financial dataset containing 10 million 
transactions from a major payment processor, achieving 94.2% detection rate with 1.8% false positive rate. 

Real-time deployment of DL fraud detection systems requires careful consideration of infrastructure 
requirements and operational constraints. Models must process transactions with minimal latency while handling 
high throughput, often requiring distributed computing architectures and model serving optimizations [37]. The 
need for continuous model updates to adapt to evolving fraud patterns necessitates robust MLops pipelines that 
can retrain models on fresh data and deploy updates without service interruption. Research has addressed the 
challenge of concept drift in fraud detection, where the distribution of both legitimate and fraudulent transactions 
changes over time, requiring adaptive learning strategies. Online learning approaches that incrementally update 
models with new data have been developed to maintain detection performance as patterns evolve. Furthermore, 
ensemble methods combining multiple DL architectures with different strengths have proven effective in 
improving robustness and reducing false positives [38]. 
 

4. Deep Learning for Credit Risk Assessment and Risk Management 
Credit risk assessment represents a fundamental challenge in financial systems where sequential decision-

making plays a crucial role in evaluating borrower creditworthiness over time. Traditional credit scoring models 
such as logistic regression and credit bureau scores provide static assessments based on point-in-time snapshots of 
borrower characteristics, failing to capture the dynamic evolution of credit risk [39]. DL architectures enable the 
modeling of temporal patterns in borrower behavior, payment histories, account activities, and macroeconomic 
conditions, providing more accurate and timely risk assessments. LSTM networks have been particularly 
successful in credit risk modeling due to their ability to process variable-length sequences of financial events and 
capture long-term dependencies that indicate deteriorating credit quality. The sequential nature of credit data, 
including payment histories, balance trajectories, and credit utilization patterns, makes it naturally suited to 
recurrent architectures that can learn complex temporal relationships. 

The application of DL to credit default prediction has demonstrated substantial improvements over traditional 
methods by incorporating richer temporal information and learning non-linear relationships among risk factors. 
Research has shown that LSTM-based models can predict credit default several months in advance by detecting 
early warning signals in transaction patterns and account behaviors [40]. These models process sequences of 
borrower activities including payment timing, transaction volumes, balance changes, and credit line utilization, 
learning representations that capture financial stress indicators. The ability to provide early warnings of potential 
default enables proactive interventions such as modified payment plans or increased credit monitoring, potentially 
preventing defaults and reducing losses. Furthermore, DL architectures can incorporate alternative data sources 
including mobile phone usage patterns, utility payment histories, and online behavioral data, expanding credit 
access to populations with limited traditional credit histories [41]. 

Portfolio-level credit risk management has benefited from DL architectures that can model dependencies 
among borrowers and capture systemic risk factors affecting multiple accounts simultaneously. Traditional 
portfolio models often assume independence among borrowers or use simplified correlation structures, failing to 
capture complex dependencies that emerge during economic stress periods [42]. DL-based approaches can learn 
joint distributions of default probabilities across portfolios, identifying concentration risks and correlated 
exposures. Research has demonstrated that models incorporating macroeconomic variables and market indicators 
can better predict portfolio-level credit losses during economic downturns. The integration of attention 
mechanisms allows credit risk models to dynamically weight the importance of different macroeconomic factors 
and borrower characteristics, adapting to changing economic conditions. 

Survival analysis frameworks using DL have extended credit risk modeling beyond binary default prediction to 
time-to-event analysis, enabling more sophisticated risk management strategies. These models predict not only 
whether a borrower will default but also when default is likely to occur, providing valuable information for pricing 
credit products and managing exposure [43]. DL-based survival models can handle time-varying covariates and 
complex hazard functions that traditional survival methods struggle to model. Research has shown that deep 
survival models outperform traditional approaches such as Cox proportional hazards models when dealing with 
high-dimensional feature spaces and non-proportional hazards. The ability to generate probability distributions 
over time-to-default rather than point estimates enables more nuanced risk assessments and supports scenario 
analysis under different economic conditions. 
 

Table 1. Comparison of credit risk model performance metrics across different architectures. 

Model Type AUC-ROC 
Score 

Precision @10% 
Recall 

Early Detection 
(Months) 

Training 
Time (Hours) 

Inference Latency 
(ms) 

Logistic 
Regression 

0.721 0.412 1.8 0.4 2 

Random Forest 0.768 0.491 2.5 2.1 8 
Gradient Boosting 0.804 0.567 3.3 3.7 15 
LSTM Network 0.847 0.623 4.2 8.3 12 

Transformer 0.863 0.618 4.1 15.7 18 

 
Results are from a comprehensive 2024 study by Chen et al. published in Journal of Financial Data Science, 

comparing traditional logistic regression, random forest, gradient boosting, LSTM networks, and transformer-
based models on a large consumer credit dataset from a major US financial institution. The dataset contains 2.3 
million loan accounts tracked over five years from 2019 to 2023. Performance metrics include AUC-ROC score 
measuring overall discriminative ability, precision at 10% recall threshold relevant for practical deployment, 
average early detection time in months before actual default occurrence, model training time on V100 GPU cluster, 
and inference latency per prediction in milliseconds. The LSTM model achieves strong balance between predictive 



Journal of Banking and Financial Dynamics, 2025, 9(9):1-11 

6 
© 2025 by the authors; licensee Eastern Centre of Science and Education, USA 

 

 

performance (AUC-ROC: 0.847, Precision: 0.623) and early detection capability (4.2 months average lead time), 
with reasonable training time of 8.3 hours and low inference latency of 12ms. The transformer model shows 
highest AUC-ROC of 0.863 but requires significantly longer training time of 15.7 hours. Traditional logistic 
regression demonstrates fastest training (0.4 hours) and inference (2ms) but poorest predictive performance (AUC-
ROC: 0.721) and early detection capability (1.8 months). Best scores in each category are highlighted. 

The challenge of model interpretability in credit risk assessment is particularly acute due to regulatory 
requirements such as adverse action notices that require explanations for credit decisions. While DL models often 
achieve superior predictive performance, their black-box nature creates obstacles for regulatory compliance and 
stakeholder acceptance [44]. Various approaches have been developed to enhance interpretability of DL credit risk 
models, including attention visualization, feature importance analysis through perturbation methods, and the 
development of hybrid architectures that combine interpretable components with DL layers. Research has explored 
the use of rule extraction techniques to derive human-understandable decision rules from trained DL models, 
providing explanations that satisfy regulatory requirements while maintaining predictive accuracy [45]. 
Furthermore, the development of inherently interpretable architectures such as neural additive models has shown 
promise in credit risk applications where both performance and explainability are essential. 

Risk management beyond credit default encompasses market risk, liquidity risk, and operational risk, all of 
which involve sequential decision-making under uncertainty. DL architectures have been applied to VaR 
estimation, learning complex joint distributions of asset returns that capture tail dependencies and extreme event 
probabilities [46]. Traditional VaR methods rely on parametric distributional assumptions or historical simulation, 
both of which have limitations in capturing the fat-tailed and skewed distributions typical of financial returns. DL-
based approaches can learn flexible distributional models from data, improving VaR accuracy particularly during 
stress periods when traditional methods often fail. Research has demonstrated that LSTM-based VaR models that 
incorporate time-varying volatility and correlation dynamics provide more accurate risk estimates than static 
approaches [47]. The application of conditional GANs to generate scenarios for stress testing has enabled risk 
managers to explore a wider range of potential market outcomes and assess portfolio resilience under various 
adverse conditions. 
 

5. Algorithmic Trading and Market Microstructure Applications 
Algorithmic trading represents one of the most demanding applications of DL for sequential decision-making 

in financial systems, requiring models to process vast streams of market data and make trading decisions within 
microseconds while adapting to continuously evolving market conditions. The objective of algorithmic trading 
systems is to execute trading strategies that generate alpha through superior prediction of price movements or to 
minimize execution costs when implementing portfolio decisions [48]. DL architectures have transformed 
algorithmic trading by enabling the processing of high-dimensional market data including order book dynamics, 
trade flows, market depth information, and alternative data sources such as news sentiment and social media. 
LSTM networks have been widely applied to predict short-term price movements by learning patterns in historical 
price sequences, volume dynamics, and market microstructure features that contain information about future price 
direction [49]. 

The application of attention mechanisms to trading models has enhanced their ability to identify relevant 
market signals amid the noise inherent in high-frequency financial data. Markets exhibit complex dynamics where 
the relevance of historical information varies depending on current conditions, making static lookback windows 
suboptimal [50]. Attention-based architectures can dynamically determine which historical observations are most 
informative for current predictions, adapting to changing market regimes and information flows. Research has 
demonstrated that transformer models, which rely entirely on attention mechanisms without recurrence, can 
effectively capture long-range dependencies in market data while enabling parallel processing that reduces training 
and inference time. These models process sequences of market states and learn to attend to specific patterns that 
precede profitable trading opportunities, achieving superior risk-adjusted returns compared to simpler 
architectures. 

The challenge of non-stationarity in financial markets, where statistical properties change over time due to 
evolving market structure, regulatory changes, and shifts in participant behavior, necessitates adaptive DL 
architectures capable of detecting and responding to regime changes [51]. Meta-learning approaches have been 
developed to train models that can quickly adapt to new market conditions with limited additional data, addressing 
the sample efficiency challenges that arise when markets enter novel regimes. Research has explored the use of 
continual learning techniques that allow trading models to incorporate new patterns without forgetting previously 
learned behaviors, maintaining performance across multiple market regimes. Furthermore, the development of 
mixture-of-experts architectures, where multiple specialized models are trained for different market conditions and 
a gating network determines which expert to use at each time, has shown promise in handling non-stationary 
trading environments. 

RL combined with DL has emerged as a powerful framework for developing trading strategies that optimize 
long-term objectives rather than myopic single-period predictions. DRL agents learn trading policies through 
interaction with market environments, either historical data through backtesting or simulated markets, discovering 
strategies that maximize cumulative rewards such as Sharpe ratio or portfolio value [52]. Policy gradient methods 
and actor-critic algorithms have been successfully applied to portfolio management, learning to dynamically 
allocate capital across assets based on market conditions. The advantage of DRL lies in its ability to incorporate 
transaction costs, market impact, and position limits directly into the learning objective, resulting in strategies that 
are practical for real-world deployment. Research has demonstrated that DRL-based trading systems can discover 
novel trading strategies that differ from traditional technical and fundamental approaches, potentially accessing 
unique sources of alpha [53]. 

Optimal trade execution represents a specific sequential decision-making problem where the objective is to 
execute large orders with minimal market impact and transaction costs. Traditional execution algorithms such as 
volume-weighted average price (VWAP) and time-weighted average price (TWAP) follow predetermined 
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schedules that do not adapt to market conditions [54]. DL-based execution algorithms learn optimal execution 
strategies by observing how order submissions affect prices and adjusting execution schedules dynamically based 
on market liquidity, volatility, and adverse selection risk. Research has shown that DRL agents can learn 
sophisticated execution strategies that outperform traditional algorithms by adapting to market microstructure 
features and avoiding predictable patterns that could be exploited by other market participants. The integration of 
limit order book data into DL execution models provides fine-grained information about market liquidity and 
enables more precise control of execution timing and order placement. 
 

 
Figure 2. Visualization of attention weights in a transformer-based trading model during a significant market volatility event.  

 
The heatmap displays attention scores across different time lags (rows) and market features (columns) when 

making trading decisions at 2:30 PM during a major market drawdown on March 15, 2024. Each cell shows the 
attention weight value ranging from 0 to 1, with color intensity from light yellow (low attention, near 0) to dark 
red (high attention, near 1). The x-axis represents different market features including current price, trade volume, 
bid-ask spread, order book imbalance ratio, realized volatility, and market depth at five price levels. The y-axis 
shows time lags from current moment to 60 minutes prior in varying intervals. The visualization reveals that the 
model focuses heavily on recent order book imbalance (attention weights 0.89-0.91) and realized volatility 
(attention weights 0.85-0.91) when making decisions during volatile periods, indicated by the darker red coloring 
in these columns for recent time lags. Attention to price history extends further back, showing elevated weights 
(0.32-0.36) at 45-60 minute lags during calm pre-volatility periods, suggesting the model recognizes historical 
price patterns as precursors to current volatility. Data collected from high-frequency trading session on NASDAQ 
exchange for large-cap technology stock with average daily volume exceeding 50 million shares. Source: Zhang et 
al. 2024 study on attention mechanisms in financial markets published in Quantitative Finance journal. 

Market making strategies, where traders provide liquidity by simultaneously posting buy and sell limit orders, 
represent another important application of DL for sequential decision-making in financial markets. Market makers 
face the challenge of setting bid and ask prices that attract order flow while managing inventory risk and adverse 
selection from informed traders [55]. DL architectures have been applied to learn optimal market making policies 
that balance these competing objectives. LSTM networks can model the dynamics of order arrivals, price 
movements, and inventory accumulation, enabling market makers to adjust quotes dynamically based on current 
market conditions and inventory positions. Research has demonstrated that DRL-based market making agents can 
achieve superior performance compared to traditional market making algorithms by learning to adapt spreads and 
quote sizes based on volatility regimes, order flow toxicity, and inventory constraints [56]. 

The integration of alternative data sources into DL trading models has opened new opportunities for alpha 
generation by incorporating information not fully reflected in traditional price and volume data. News sentiment 
analysis using transformer-based NLP models can extract market-moving information from financial news articles, 
earnings call transcripts, and social media posts [57]. These sentiment signals can be integrated into trading 
models as additional features that inform buy and sell decisions. Research has shown that DL models combining 
traditional market microstructure features with alternative data can achieve improved prediction accuracy and 
trading performance. However, the challenge of identifying true signal in noisy alternative data requires 
sophisticated architectures capable of filtering out irrelevant information and focusing on genuinely predictive 
patterns. 
 

6. Challenges and Future Directions 
The deployment of DL architectures for sequential decision-making in financial systems faces several critical 

challenges that must be addressed to realize their full potential. Model interpretability remains a primary concern, 
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particularly in regulated financial applications where decisions affecting customers and markets require explanation 
and justification [58]. While attention mechanisms and other interpretability techniques provide some insight into 
model behavior, they often fall short of the level of transparency required by regulators and stakeholders. Future 
research must focus on developing architectures that maintain high predictive performance while offering inherent 
interpretability, such as neural additive models that decompose predictions into additive contributions from 
individual features. Furthermore, the development of post-hoc explanation methods specifically tailored to financial 
sequential decision-making contexts can help bridge the gap between model complexity and interpretability 
requirements. 

The challenge of data quality and availability significantly impacts the effectiveness of DL models in financial 
applications. Financial data often suffers from missing values, measurement errors, and limited historical coverage, 
particularly for rare events such as financial crises [59]. The non-stationary nature of financial markets means that 
historical data may have limited relevance for current conditions, reducing the effectiveness of models trained on 
past observations. Future research should explore techniques for robust learning under data quality constraints, 
including methods for handling missing data, detecting and correcting measurement errors, and incorporating 
uncertainty quantification into model predictions. Transfer learning approaches that leverage knowledge from 
related tasks or markets may help address data scarcity issues, enabling models to generalize from limited 
historical observations. 

Adversarial robustness represents a unique challenge in financial applications, where malicious actors may 
attempt to manipulate data or exploit model behavior for financial gain. Unlike image classification tasks where 
adversarial examples are primarily a theoretical concern, financial markets involve strategic interactions where 
participants actively seek to exploit predictable patterns [60]. DL models deployed in trading or fraud detection 
may become targets of adversarial attacks designed to trigger false signals or evade detection. Future research 
must develop architectures and training procedures that enhance model robustness against adversarial 
manipulation, including adversarial training techniques adapted to financial contexts and the development of 
detection mechanisms for identifying adversarial attacks in real-time. 

The computational efficiency of DL models presents practical challenges for real-time financial applications 
where decisions must be made within strict latency constraints. While transformer architectures offer advantages 
in modeling long-range dependencies, their computational complexity grows quadratically with sequence length, 
limiting their applicability to high-frequency trading scenarios [61]. Future research should focus on developing 
efficient architectures that maintain the modeling capabilities of transformers while reducing computational 
requirements, such as linear attention mechanisms and sparse attention patterns optimized for financial time series. 
Furthermore, the development of model compression techniques including quantization, pruning, and knowledge 
distillation can enable the deployment of complex DL architectures on resource-constrained hardware. 

The integration of domain knowledge into DL architectures represents an important direction for improving 
model performance and interpretability in financial applications. While end-to-end learning from raw data is 
appealing, incorporating financial theory and domain expertise into model design can improve generalization and 
provide economic interpretability [62]. Physics-informed neural networks that incorporate constraints based on 
financial principles such as no-arbitrage conditions or market equilibrium represent a promising approach. Future 
research should explore hybrid architectures that combine data-driven learning with structured components 
encoding domain knowledge, enabling models to respect fundamental financial principles while learning complex 
patterns from data. 

Federated learning and privacy-preserving techniques offer promising solutions for addressing data privacy 
concerns in financial applications while enabling collaboration across institutions [63]. Financial institutions often 
possess complementary datasets that could benefit model training but cannot be shared due to privacy regulations 
and competitive concerns. Federated learning enables multiple institutions to collaboratively train DL models 
without sharing raw data, potentially improving model performance through access to larger and more diverse 
datasets. Future research should explore federated learning protocols specifically designed for financial sequential 
decision-making tasks, addressing challenges such as non-identically distributed data across institutions and the 
need for secure aggregation of model updates. 

Quantum-inspired and neuromorphic computing architectures represent emerging technologies that may 
enhance the capabilities of DL for financial sequential decision-making. Quantum machine learning algorithms 
offer potential advantages in optimization and sampling tasks relevant to portfolio management and risk 
assessment [64]. While practical quantum computers remain limited in scale, quantum-inspired classical 
algorithms that leverage insights from quantum computing may provide near-term benefits. Neuromorphic 
hardware implementing spiking neural networks offers advantages in energy efficiency and temporal processing 
that could benefit high-frequency financial applications. Future research should explore how these emerging 
computing paradigms can be leveraged to enhance DL capabilities in financial contexts. 

The development of standardized benchmarks and evaluation protocols for DL in financial sequential decision-
making would facilitate progress by enabling fair comparisons across methods and promoting reproducibility. 
Current research often uses proprietary datasets and non-standard evaluation metrics, making it difficult to assess 
relative performance of different approaches [65]. Future efforts should focus on creating publicly available 
benchmark datasets that capture the diversity and complexity of financial sequential decision-making tasks while 
respecting privacy constraints. Furthermore, the development of evaluation protocols that go beyond simple 
accuracy metrics to assess robustness, fairness, and interpretability would provide more comprehensive assessment 
of model quality. 
 
 
 

7. Conclusion 
This review has examined the application of DL architectures to sequential decision-making in financial 

systems, with particular focus on fraud detection, credit risk assessment, algorithmic trading, and risk 
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management. The analysis demonstrates that DL models, particularly RNNs, LSTM networks, GRUs, and 
transformer-based architectures, offer substantial advantages over traditional methods by automatically learning 
hierarchical representations from sequential financial data and capturing complex temporal dependencies. These 
architectures have achieved significant success across diverse financial applications, enabling real-time fraud 
detection systems that adapt to evolving patterns, credit risk models that provide early warning signals of 
deterioration, and algorithmic trading strategies that optimize long-term objectives. 

The integration of attention mechanisms has enhanced model interpretability while improving performance, 
allowing financial institutions to understand which historical events and features drive model predictions. The 
combination of DL with RL has opened new avenues for developing adaptive trading systems and dynamic risk 
management strategies that learn optimal policies through interaction with market environments. Furthermore, 
the incorporation of graph-based architectures has extended capabilities to capture network effects and 
relationships among entities in financial systems, enabling detection of sophisticated fraud schemes and assessment 
of systemic risks. 

Despite these advances, significant challenges remain in deploying DL architectures for financial sequential 
decision-making. The non-stationary nature of financial data, low signal-to-noise ratios, and adversarial market 
dynamics require ongoing research into robust and adaptive architectures. Model interpretability and regulatory 
compliance continue to pose obstacles, necessitating development of explainable architectures and post-hoc 
explanation methods. Computational efficiency constraints in high-frequency applications demand continued 
innovation in efficient architectures and deployment optimizations. 

Future research directions include the development of inherently interpretable architectures that maintain high 
performance, robust learning methods that handle data quality issues and adversarial attacks, and federated 
learning approaches that enable privacy-preserving collaboration across institutions. The integration of domain 
knowledge into DL architectures through physics-informed networks and hybrid models offers promise for 
improving generalization and economic interpretability. Emerging technologies such as quantum-inspired 
algorithms and neuromorphic computing may provide new capabilities for financial sequential decision-making 
tasks. The establishment of standardized benchmarks and comprehensive evaluation protocols will facilitate 
progress by enabling fair comparisons and promoting reproducibility. 

The continued evolution of DL architectures for financial sequential decision-making holds tremendous 
potential for transforming how financial institutions detect fraud, assess risk, execute trades, and manage 
portfolios. As architectures become more sophisticated, interpretable, and robust, their adoption across the financial 
services industry is likely to accelerate, driving improvements in efficiency, risk management, and customer 
protection while enabling new capabilities previously unattainable with traditional methods. 
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